Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Emerg Infect Dis ; 29(2): 371-380, 2023 02.
Article in English | MEDLINE | ID: covidwho-2215191

ABSTRACT

The Omicron variant of SARS-CoV-2 has become dominant in most countries and has raised significant global health concerns. As a global commerce center, New York, New York, USA, constantly faces the risk for multiple variant introductions of SARS-CoV-2. To elucidate the introduction and transmission of the Omicron variant in the city of New York, we created a comprehensive genomic and epidemiologic analysis of 392 Omicron virus specimens collected during November 25-December 11, 2021. We found evidence of 4 independent introductions of Omicron subclades, including the Omicron subclade BA.1.1 with defining substitution of R346K in the spike protein. The continuous genetic divergence within each Omicron subclade revealed their local community transmission and co-circulation in New York, including both household and workplace transmissions supported by epidemiologic evidence. Our study highlights the urgent need for enhanced genomic surveillance and effective response planning for better prevention and management of emerging SARS-CoV-2 variants.


Subject(s)
COVID-19 , Humans , New York/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Commerce
2.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: covidwho-1884206

ABSTRACT

Being in the epicenter of the COVID-19 pandemic, our lab tested 193,054 specimens for SARS-CoV-2 RNA by diagnostic multiplex reverse transcription polymerase chain reaction (mRT-PCR) starting in March 2020, of which 17,196 specimens resulted positive. To investigate the dynamics of virus molecular evolution and epidemiology, whole genome amplification (WGA) and Next Generation Sequencing (NGS) were performed on 9516 isolates. 7586 isolates with a high quality were further analyzed for the mutation frequency and spectrum. Lastly, we evaluated the utility of the mRT-PCR detection pattern among 26 reinfected patients with repeat positive testing three months after testing negative from the initial infection. Our results show a continuation of the genetic divergence in viral genomes. Furthermore, our results indicate that independent mutations in the primer and probe regions of the nucleocapsid gene amplicon and envelope gene amplicon accumulate over time. Some of these mutations correlate with the changes of detection pattern of viral targets of mRT-PCR. Our data highlight the significance of a continuous genetic divergence on a gene amplification-based assay, the value of the mRT-PCR detection pattern for complementing the clinical diagnosis of reinfection, and the potential for WGA and NGS to identify mutation hotspots throughout the entire viral genome to optimize the design of the PCR-based gene amplification assay.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/genetics , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Multiplex Polymerase Chain Reaction , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
PloS one ; 17(2), 2022.
Article in English | EuropePMC | ID: covidwho-1688135

ABSTRACT

Increasing global travel and changes in the environment may escalate the frequency of contact with a natural host carrying an infection and, therefore, increase our chances of encountering microorganisms previously unknown to humans. During an emergency, the etiology of infection may be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship Programs may not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine specimens. The antimicrobial potency was determined by the level of microbial growth inhibition and compared to conventional antimicrobial susceptibility testing results. The oligonucleotide probe pairs on the sensors were designed to target Gram-negative bacteria, specifically Enterobacterales and Pseudomonas aeruginosa. A pilot study of 10 remnant clinical specimens from the Clinical Laboratory Improvement Amendments-certified labs of New York-Presbyterian Queens was conducted, and only one sample was not detected by the probes. The remaining nine samples agreed with reference AST methods (Vitek and broth microdilution), resulting in 100% categorical agreement. In a separate feasibility study, we evaluated a dual-kinetic response approach, in which we inoculated two antibiotic stripwells containing the same antimicrobial concentrations with clinical specimens at the original concentration (1x) and at a 10-fold dilution (0.1x) to cover a broader range of microbiological responses. The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from 105 to 108 CFU/mL.

4.
Sci Rep ; 11(1): 16069, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1356580

ABSTRACT

Point-of-care testing is cost-effective, rapid, and could assist in avoiding hospital visits during a pandemic. However, they present some significant risks that current technologies cannot fully address. Skin flora contamination and insufficient specimen volume are two major limitations preventing self-collection microbiological testing outside of hospital settings. We are developing a hybrid testing procedure to bridge the laboratory test with patient-side specimen collection and transportation for molecular microbial classification of causative bacterial infection and early identification of microbial susceptibility profiles directly from whole blood or urine specimens collected patient-side by health care workers such as phlebotomists in nursing homes or family clinics. This feasibility study presents our initial development efforts, in which we tested various transportation conditions (tubes, temperature, duration) for direct-from-specimen viable pathogen detection to determine the ideal conditions that allowed for differentiation between contaminant and causative bacteria in urine specimens and optimal growth for low-concentration blood specimens after transportation. For direct-from-urine assays, the viable pathogen at the clinical cutoff of 105 CFU/mL was detected after transportation with molecular assays while contaminants (≤ 104 CFU/mL) were not. For direct-from-blood assays, contrived blood samples as low as 0.8 CFU/mL were reported positive after transportation without the need for blood culture.


Subject(s)
Bacteria/growth & development , Bacterial Infections/microbiology , Specimen Handling/methods , Transportation/methods , Cost-Benefit Analysis , Humans , Nursing Homes , Point-of-Care Testing , Skin/microbiology
5.
Mult Scler Relat Disord ; 55: 103175, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1338450

ABSTRACT

BACKGROUND & METHODS: We conducted an online COVID-19 survey as the vaccines became available, utilising the UK MS Register, to understand people with multiple sclerosis (pwMS) views on COVID-19 vaccination and the subsequent vaccine uptake rates. RESULTS & CONCLUSION: 94.4% of 3191 pwMS surveyed indicated they would get a COVID-19 vaccine, while 5.6% would not. PwMS who have previously had an influenza vaccine, increasing age and the perception of having sufficient information about the vaccine were associated with increased likelihood of getting a vaccine. 51.7% of 3191 pwMS completed a follow-up survey indicating they received at least 1 dose of a COVID-19 vaccine. The proportion having had the vaccination based on their prior opinions was 53.2% in 'Yes' group and 27.0% in 'No' group, the latter reflecting a change based on their initial views. More information on COVID-19 vaccine safety in pwMS would be helpful for people to make informed decisions.


Subject(s)
COVID-19 , Influenza Vaccines , Multiple Sclerosis , COVID-19 Vaccines , Humans , SARS-CoV-2 , United Kingdom , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL